
Aviso
Release 0.11.1

ECMWF

Nov 08, 2022

USER GUIDE:

1 Overview 3

2 Getting Started 5

3 Define my Listener 9

4 Aviso as a Python API 11

5 Listener Examples 13

6 Testing my Listener 21

7 Notification Catch-up 23

8 Make Your Own Event 25

9 Running as a Service 27

10 How Aviso Works at ECMWF 29

11 Configuration 33

12 Triggers 43

13 Notification CLI 47

14 Python API 53

15 Configuration Management 55

16 What’s New 59

17 How to Develop 61

18 Aviso Client Architecture 63

19 Aviso Server Architecture 65

20 License 69

i

ii

Aviso, Release 0.11.1

Aviso is a software developed by ECMWF that allows to notify time-critical events across HPC and Cloud systems in
order to enable workflows among multiple domains.

It allows users to:

• Define events that require notification

• Define triggers to be executed once a notification is received

• Send and receive notifications

This enables the creation of automatic workflows, timely triggered as events are notified.

See Overview for more information.

USER GUIDE: 1

Aviso, Release 0.11.1

2 USER GUIDE:

CHAPTER

ONE

OVERVIEW

Aviso is a scalable notification system designed for high-throughput. It is developed by ECMWF - European Centre
for Medium-Range Weather Forecasts - with the aim of:

• Notifying events

• Triggering users’ workflows

• Supporting a semantic When <this> . . . Do <that> . . .

• Persistent history and replay ability

• Independent of HPC or Cloud environments

• Protocol agnostic

• Highly reliable - built for time-critical applications.

Aviso is not designed to deliver data with the notifications. The payload is designed to provide lightweight message.
If the intent is to provide notifications about data availability for example, then we suggest using the payload to inform
about the data location (e.g. URL).

Aviso is a client-server application. We refer to the notification server as Aviso Server while to the client application as
Aviso Client or just Aviso. This user guide and the reference are focused on Aviso client. More info on its architecture
is available in Aviso Client Architecture.

The server system is based on a persistent key-value store where the events are stored, the key represents the event’s
metadata while the value, the event’s payload. More info on the server architecture and its components is available in
Aviso Server Architecture.

1.1 What could I use Aviso for?

Aviso is developed with the intention of being generic and applicable to various domains and architectures, also inde-
pendently of ECMWF software systems. Aviso can be used for:

• Automating users’ workflows requiring notifications based on user-defined events.

• Automating users’ workflows requiring ECMWF notifications on data availability. See How Aviso Works at
ECMWF for more details on this service

• Automating multi-domain workflows across different Clouds and HPC centres. Aviso client can be extended to
connect to various general purpose notification systems; similarly Aviso server can store generic events and be
extended to integrate with legacy architectures

• Configuration Management. This functionality goes beyond Aviso’s main aim but it is part of the notification
workflow and can also be used independently. See Configuration Management for more info

3

Aviso, Release 0.11.1

1.2 Aviso general workflow

Figure below represents the general workflow of the Aviso system:

1. Aviso client allows an End-User to subscribe to an event and to program a trigger

2. Aviso client polls Aviso server for changes to the defined event

3. A notification provider submits a notification to Aviso server

4. The subscriber is notified with a new event

5. The event triggers the user’s workflow

4 Chapter 1. Overview

CHAPTER

TWO

GETTING STARTED

Aviso Client can be used as a Python API or as Command-Line Interface (CLI) application. Below find a few steps to
quickly get a working configuration on Linux.

Note: Currently Aviso supports only etcd as key-value store for the server side. The following quick start shows how
to connect to a local basic installation of etcd. See Configuration on how to connect to a remote cluster.

2.1 Installing

Warning: Aviso requires Python 3.6+ and etcd 3.4+

1. Install Aviso Client, simply run the following command:

pip install pyaviso

2. Install etcd, below the basic steps to install a local server:

ETCD_VER=v3.4.14
DOWNLOAD_URL=https://github.com/etcd-io/etcd/releases/download

curl -L ${DOWNLOAD_URL}/${ETCD_VER}/etcd-${ETCD_VER}-linux-amd64.tar.gz -o /tmp/etcd-$
→˓{ETCD_VER}-linux-amd64.tar.gz
mkdir /tmp/etcd-download-test
tar xzvf /tmp/etcd-${ETCD_VER}-linux-amd64.tar.gz -C /tmp/etcd-download-test --strip-
→˓components=1

start a local etcd server
/tmp/etcd-download-test/etcd

For more advanced configuration or installation on different platforms please refer to the official documentation on the
release page. Note that the etcd version mentioned in the script above is the latest available at the time of writing this
documentation. Use any compatible version.

5

https://etcd.io/
https://etcd.io/
https://etcd.io/
https://github.com/etcd-io/etcd/releases

Aviso, Release 0.11.1

2.2 Configuring

All the examples of this guide are based on a representative use case, the broadcast of flight events, such as landing or
take-off, that could trigger workflows for flight trackers and related applications. This use case is available by default.
The following steps show how to try it out. See Make Your Own Event to customise it to your application.

Create a configuration file in the default location ~/.aviso/config.yaml with the following settings:

listeners:
- event: flight
request:
country: Italy

triggers:
- type: echo

This file defines how to run Aviso, the event to listen to and the triggers to execute in case of notifications. This is a
basic example of a generic listener to events of type flight. request describes for which events the user wants to
execute the triggers. It is made by a list of keys. The users have to specify only the keys that they want to use to identify
the events they are interested into. Only the notifications complying with all the keys defined will execute the triggers.
In this example the trigger will be executed only when flight events for Italy will be received. These keys are defined
by the listener schema file, see Make Your Own Event for more info.

The trigger in this example is echo. This will simply print out the notification to the console output.

Check Define my Listener to create a more complex listener.

2.3 Launching

1. Launch Aviso application by running the following:

aviso listen

Once in execution this command will create a process waiting for notifications compliant with the listener defined
above.

The user can terminate the application by pressing the key combination CTRL + C

Note: The configuration file is only read at start time, therefore every time users make changes to it they need
to restart the listening process.

2. Submit a example notification, from another terminal:

aviso notify event=flight,country=Italy,airport=fco,date=20210101,number=AZ203,
→˓payload=Landed

This example represents the landing event for the flight AZ203 in Fiumicino(FCO) Airport in Rome on 01-01-2021.

3. After a few seconds, the trigger defined should be executed. The terminal where the listening process is running
should display the following:

"event": "flight",
"payload": "Landed",
"request": {

(continues on next page)

6 Chapter 2. Getting Started

Aviso, Release 0.11.1

(continued from previous page)

"country": "italy",
"date": "20210101",
"airport": "FCO",
"number": "AZ203"

}

Note: payload is used to assign a value to the specific event notified. It is, however, optional. If not given the
payload will be None. This last case is used when only an acknowledgement that something happened is needed.

The complete list of available commands can be found in Notification CLI

2.3. Launching 7

Aviso, Release 0.11.1

8 Chapter 2. Getting Started

CHAPTER

THREE

DEFINE MY LISTENER

Aviso configuration file allows the definition of multiple listeners. Alternatively, the listener configuration can be
indicated as an independent file or multiple files. Regardless of where is defined, each listener is composed of:

• event - the kind of event to listen to

• request - a dictionary of keys identifying the specific events to be notified

• triggers - sequence of processes to be executed once a notification is received

All aspects of what kind of event can be used and which keys to use in a request are defined by the event lister schema.
Each key is used to identify the events the user wants to be notified. The more keys are used the narrower the selection
would be. When Aviso reads a listener request each key value is validated and formatted accordingly with the schema.
Each key is associated to a type that provides a number of properties used during its validation. See Make Your Own
Event for more info on how to edit the schema and create your own event.

The listener below uses all the keys available for the flight events. In this case the trigger will be executed only for the
events regarding flights AZ203 on 01-01-2021 at the Fiumicino(FCO) and Ciampino(CIA) airport in Rome. Note that
each key accepts single or multiple values.

listeners:
- event: flight
request:
country: italy
airport: [FCO, CIA]
date: 20210101
number: AZ203

triggers:
- type: echo

3.1 Triggers

The triggers block accepts a sequence of triggers. Each trigger will result in an independent process executed every
time a notification is received. These are the triggers currently available:

• echo is the simplest trigger as it prints the notification to the console output. It is used for testing

• log is useful for recording the received event to a log file

• command allows the user to define a shell command to work with the notification

• post allows the user to send the notification received as HTTP POST message formatted accordingly to the
CloudEvents specification

9

https://cloudevents.io/

Aviso, Release 0.11.1

More information are available in Triggers.

The example below shows how to configure multiple listeners executing scripts for different set of notifications, all
flights going to or from italy, all flights AZ203, or all flights concerning Fiumicino(FCO) airport.

listeners:
- event: flight
request:
country: italy

triggers:
- type: command
command: ./my_script_per_country.sh

- event: flight
request:
number: AZ203

triggers:
- type: command
command: ./my_script_per_flight.sh

- event: flight
request:
airport: FCO

triggers:
- type: command
command: ./my_script_per_airport.sh

More examples are available in Listener Examples

10 Chapter 3. Define my Listener

CHAPTER

FOUR

AVISO AS A PYTHON API

Aviso can be used as a Python API. This is intended for users that want to integrate Aviso in a bigger workflow written
in Python or that simply have their trigger defined as a Python function. Below find an example of a Python script that
defines a function to be executed once a notification is received, creates a listener that references this function trigger
and finally passes it to aviso to execute.

from pyaviso import NotificationManager

define function to be called
def do_something(notification):

print(f"Notification for step {notification['request']['step']} received")
now do something useful with it ...

define the trigger
trigger = {"type": "function", "function": do_something}

create a event listener request that uses that trigger
request = {"country": "italy"}
listeners = {"listeners": [{"event": "flight", "request": request, "triggers": [trigger]}
→˓]}

run it
aviso = NotificationManager()
aviso.listen(listeners=listeners)

Note: This example is using the default configuration file in ~/aviso/config.yaml and the generic listener schema
presented in Getting Started. Alternatively, a configuration object can be passed to the NotificationManager.

See Python API for more info.

11

Aviso, Release 0.11.1

12 Chapter 4. Aviso as a Python API

CHAPTER

FIVE

LISTENER EXAMPLES

5.1 Command

Below find an example of an event listener for flight events that will execute a command trigger in case of notifications.
Note the parameter substitution mechanism for the command and the environment variables defined.

listeners:
- event: flight
request:
country: [Italy, Germany]

triggers:
- type: command
working_dir: examples
command: ./my_script.sh --date ${request.date} --number ${request.number}
environment:
AIRPORT: ${request.airport}

Below find a similar example of a command trigger. This time the parameter substitution is passing the entire notification
as json.

listeners:
- event: flight
request:
country: italy
airport: [FCO, CIA]
date: 20210101
number: AZ203

triggers:
- type: command
command: ./my_script.sh --json ${json}

Below find a similar example of a command trigger. This time the parameter substitution is passing the file path to a
json file containing the notification.

listeners:
- event: flight
request:
number: AZ203

triggers:
- type: command
command: ./my_script.sh --jsonpath ${jsonpath}

13

Aviso, Release 0.11.1

Finally, find below the example shell script executed by the triggers above. Note how the parameters are passed from
the triggers to the script.

#!/bin/bash
(C) Copyright 1996- ECMWF.
#
This software is licensed under the terms of the Apache Licence Version 2.0
which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
In applying this licence, ECMWF does not waive the privileges and immunities
granted to it by virtue of its status as an intergovernmental organisation
nor does it submit to any jurisdiction.

Example of a Command trigger

echo "Test demonstrating a Command trigger"
POSITIONAL=()
while [[$# -gt 0]]
do
key="$1"

case $key in
--date)
DATE="$2"
shift # past argument
shift # past value
;;
--number)
NUMBER="$2"
shift # past argument
shift # past value
;;
-j|--json)
JSON="$2"
shift # past argument
shift # past value
;;
-p|--jsonpath)
JSONPATH="$2"
shift # past argument
shift # past value
;;

esac
done

echo Notification received for number $NUMBER on date: $DATE
echo airport $AIRPORT
echo json: $JSON
echo jsonpath: $JSONPATH
echo "Script executed successfully"

14 Chapter 5. Listener Examples

Aviso, Release 0.11.1

5.2 Echo

Below find an example of an event listener for flight events that will execute a echo trigger in case of notifications.

listeners:
- event: flight
request:
country: [italy, france, Germany]
number: [AZ203, AZ303]

triggers:
- type: echo

5.3 Log

Below find an example of an event listener for flight events that will execute a log trigger in case of notifications.

listeners:
- event: flight
request:
date: 20210101

triggers:
- type: log
path: log/testLog.log

5.4 Accessing to ECMWF archive

This section shows some real-life examples of how to use event listeners to be notified of ECMWF real-time data
availability, mars events, and to promptly retrieve this data. The retrieval is performed using the MARS API, that
allows to access to ECMWF archive.

Below find an example of a listener triggering the script mars_script.sh.

listeners:
- event: mars
request:
class: od
expver: 1
domain: g
stream: enfo
step: [0, 1]

triggers:
- type: command
working_dir: examples
command: ./mars_script.sh --stream ${request.stream} --date ${request.date} --

→˓time ${request.time} --step ${request.step}

Here the shell script executed by the trigger above. Note how the parameters are passed from the trigger to the script.

5.2. Echo 15

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets

Aviso, Release 0.11.1

#!/bin/bash
(C) Copyright 1996- ECMWF.
#
This software is licensed under the terms of the Apache Licence Version 2.0
which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
In applying this licence, ECMWF does not waive the privileges and immunities
granted to it by virtue of its status as an intergovernmental organisation
nor does it submit to any jurisdiction.

Example of a Command trigger

echo "Test demonstrating a command trigger executing MARS request"
POSITIONAL=()
while [[$# -gt 0]]
do
key="$1"

case $key in
--date)
DATE="$2"
shift # past argument
shift # past value
;;
--stream)
STREAM="$2"
shift # past argument
shift # past value
;;
--time)
TIME="$2"
shift # past argument
shift # past value
;;
--step)
STEP="$2"
shift # past argument
shift # past value
;;

esac
done

echo Notification received for stream $STREAM, date $DATE, time $TIME, step $STEP
echo Building MARS request

REQUEST="
retrieve,
class=od,
date="$DATE",
expver=1,
levtype=sfc,
param=167.128,
stream="$STREAM",
time="$TIME",

(continues on next page)

16 Chapter 5. Listener Examples

Aviso, Release 0.11.1

(continued from previous page)

step="$STEP",
type=an,
area=75/-20/10/60,
target="my_data.grib"
"
echo Request built, sending it...
echo $REQUEST | mars
echo Script executed successfully

Equivalent operation can be done using the Aviso and MARS Python API. Note how easy is to construct the MARS
request from the notification, they both speak the MARS language thanks to the MARS keys used in the listener schema.
See How Aviso Works at ECMWF for more info.

(C) Copyright 1996- ECMWF.
#
This software is licensed under the terms of the Apache Licence Version 2.0
which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
In applying this licence, ECMWF does not waive the privileges and immunities
granted to it by virtue of its status as an intergovernmental organisation
nor does it submit to any jurisdiction.

from ecmwfapi import ECMWFService

from pyaviso.notification_manager import NotificationManager

define function to be called
def retrieve_from_mars(notification):

print(f"Notification for step {notification['request']['step']} received")
now do a MARS request with this notification...
mars_server = ECMWFService("mars")
request = notification["request"]
extend the notification with the attributes needed
request.update({"type": "fc", "levtype": "sfc", "param": 167.128, "area": "75/-20/10/

→˓60"})
mars_server.execute(request, "my_data.grib")

define the trigger
trigger = {"type": "function", "function": retrieve_from_mars}

create a event listener request that uses that trigger
request = {"class": "od", "stream": "oper", "expver": 1, "domain": "g", "step": 1}
listener = {"event": "mars", "request": request, "triggers": [trigger]}
listeners = {"listeners": [listener]}

run it
aviso = NotificationManager()
aviso.listen(listeners=listeners)

5.4. Accessing to ECMWF archive 17

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets

Aviso, Release 0.11.1

5.5 Multiple

Below find an example of an event listener for flight events that in case of notifications will execute a echo, a log
and a command trigger. They will be executed in parallel.

listeners:
- event: flight
request:
country: [italy, france, Germany]

triggers:
- type: echo
- type: log
path: log/testLog.log

- type: command
command: ./my_script.sh --date ${request.date} --number ${request.number}

Below find an example of three event listeners for different flight events.

listeners:
- event: flight
request:
country: italy

triggers:
- type: command
command: ./my_script_ita.sh

- event: flight
request:
country: germany

triggers:
- type: command
command: ./my_script_de.sh

- event: flight
request:
country: france

triggers:
- type: command
command: ./my_script_per_fr.sh

5.6 Post

Below find an example of an event listener for flight events that will execute a post trigger in case of notifications.
Specifically, this trigger will format the notification according to the CloudEvents specification and will send it to either
a endpoint as HTTP POST request or to a AWS Simple Notification Service (SNS) topic. The following example shows
how to send it to a HTTP endpoint defined by the user. The type is cloudevents_http and url is the only mandatory
parameter.

listeners:
- event: flight
request:
country: italy

triggers:
(continues on next page)

18 Chapter 5. Listener Examples

https://cloudevents.io/

Aviso, Release 0.11.1

(continued from previous page)

- type: post
protocol:
type: cloudevents_http
url: http://my.endpoint.com/

Below find a similar example showing how to customise the CloudEvents fields as well as the HTTP headers using
optional parameters.

listeners:
- event: flight
request:
country: italy

triggers:
- type: post
protocol:
type: cloudevents_http
url: http://my.endpoint.com/
headers:
Content-type: "application/json"

timeout: 30
cloudevents:
type: aviso_cloudevents
source: my_test

In the case of a notification to a AWS SNS topic defined by the user, the structure of the trigger is similar; the type has
to be cloudevents_aws and arn and region_name are the only mandatory parameters.

The optional parameters are: MessageAttributes, aws_access_key_id, aws_secret_access_key for the
AWS topic fields and cloudevents for the CloudEvents fields. Note that if aws_access_key_id and
aws_secret_access_key are not specified the AWS credentials are taken from ~/.aws/credentials if available.

AWS SNS protocol does not enforce any specification on the message payload. Aviso uses the CloudEvents specification
also in this case for consistency.

listeners:
- event: flight
request:
country: italy

triggers:
- type: post
protocol:
type: cloudevents_aws
arn: arn:aws:sns:us-east-2:848972885776:aviso
region_name: us-east-2
MessageAttributes:
attribute1:
DataType: String
StringValue: valueAttribute1

attribute2:
DataType: String
StringValue: valueAttribute2

cloudevents:
type: aviso_topic
source: my_test

5.6. Post 19

https://cloudevents.io/

Aviso, Release 0.11.1

In case of a AWS FIFO topic MessageGroupId is required.

listeners:
- event: flight
request:
country: italy

triggers:
- type: post
protocol:
type: cloudevents_aws
arn: arn:aws:sns:us-east-2:848972885776:aviso.fifo
region_name: us-east-2
MessageGroupId: aviso

5.7 Python API

Below find a Python example of a basic event listener for mars events that will execute a function trigger in case of
notifications.

(C) Copyright 1996- ECMWF.
#
This software is licensed under the terms of the Apache Licence Version 2.0
which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
In applying this licence, ECMWF does not waive the privileges and immunities
granted to it by virtue of its status as an intergovernmental organisation
nor does it submit to any jurisdiction.

from pyaviso.notification_manager import NotificationManager

define function to be called
def do_something(notification):

print(f"Notification for step {notification['request']['number']} received")
now do something useful with it ...

define the trigger
trigger = {"type": "function", "function": do_something}

create a event listener request that uses that trigger
request = {"country": "italy", "date": 20210101}
listeners = {"listeners": [{"event": "flight", "request": request, "triggers": [trigger]}
→˓]}

run it
aviso = NotificationManager()
aviso.listen(listeners=listeners)

20 Chapter 5. Listener Examples

CHAPTER

SIX

TESTING MY LISTENER

Aviso provides the capability of submitting test notifications to a local server. This functionality can be used to test the
listener configuration without any impact to the operational server.

1. Launch the aviso application in test mode. This allows connection to a local file-based notification server, part
of the aviso application, that is able to simulate the notification server behaviour.

aviso listen --test

The console should display a Test Mode message.

Note: We are assuming the listener is defined in the default configuration file as shown in Getting Started.

2. Send a test notification. From another terminal, run the notify command. Here is an example for a flight event
notification.

aviso notify event=flight,country=Italy,airport=fco,date=20210101,number=AZ203,
→˓payload=Landed --test

3. After a few seconds, the trigger defined should be executed.

Test mode can be activated at global level by setting the notification engine type to file_based In this way the --test
option is not needed. See Configuration for more info.

Note: The catch_up functionality is not available in Test Mode.

21

Aviso, Release 0.11.1

22 Chapter 6. Testing my Listener

CHAPTER

SEVEN

NOTIFICATION CATCH-UP

Before listening to new notifications, Aviso by default checks what was the last notification received and it will then
return all the notifications that have been missed since. It will then carry on by listening to new ones. The first ever
time the application runs however no previous notification will be returned. This behaviour allows users not to miss
any notifications in case of machine reboots.

To override this behaviour by ignoring the missed notifications while listening only to the new ones, run the following:

aviso listen --now

This command will also reset the notification history.

Users can also explicitly replay past notifications until available. This can also be used to test the listener configuration
with real notifications. Here is an example, launch Aviso with the following options:

aviso listen --from 2020-01-20T00:00:00.0Z --to 2020-01-21T00:00:00.0Z

It will replay all the notifications sent from 20 January to 21 January and the ones complying with the listener request
will execute the triggers.

Note: Dates must be in the past and --to can only be defined together with --from. Dates are defined in ISO format
and they are in UTC.

In absence of --to, the system, after having retrieved the past notifications, will continue listening to future notifica-
tions. If --to is defined Aviso will terminate once it has retrieved all the past notifications.

23

Aviso, Release 0.11.1

24 Chapter 7. Notification Catch-up

CHAPTER

EIGHT

MAKE YOUR OWN EVENT

The events accepted by Aviso are defined in the event listener schema; all the examples presented in this guide are
based on an example schema that is loaded by Aviso as default. Here it is:

{
"version": 0.1,
"flight": {
"endpoint": [{
"engine": ["etcd_rest", "etcd_grpc", "file_based"],
"base": "/tmp/aviso/flight/",
"stem": "{date}/{country}/{airport}/{number}"

}],
"request": {
"date": [{"type": "DateHandler", "canonic": "%Y%m%d"}],
"country": [{"type": "StringHandler", "canonic": "lower"}],
"airport": [{"type": "StringHandler", "canonic": "upper"}],
"number": [{"type": "StringHandler"}]

}
}

}

The schema is valid JSON file. Below each part of the schema is briefly explained.

8.1 Event type

flight is an event type. More event types can be defined in sequence in the same schema file.

8.2 Endpoint

On the server side events are stored in a key-value store. This means that each event is associated to a unique key.
endpoint defines how to map the event to a unique key. This unique key is the result of base/stem The parameters
in {} will be substituted at runtime for the specific event. Using the example schema above, the following event:

aviso notify event=flight,country=Italy,airport=fco,date=20210101,number=AZ203,
→˓payload=Landed

would be associated to the key /tmp/aviso/flight/20210101/italy/FCO/AZ203 in the store. What to put in base
and what in stem is a design choice as each of them plays a different role as explained below:

25

Aviso, Release 0.11.1

• engine defines for which engine adapter the configuration applies. Different engine adapter may require different
key representation to match the specific store technology. In the example above the configuration chosen is
applied to all the engine adapter available

• base is used during the listening process to define to which set of events to listen, i.e. which key prefix to query.
In the examples above, aviso would listen to /tmp/aviso/flight/

• stem is used during the listening process to further select which events, among the ones received, will execute
the triggers

8.3 Request

When Aviso reads a listener request each key value is validated and formatted accordingly with the schema. Each key
is associated to a type that provides a number of properties used during its validation. Multiple types can be defined
for the same key. In this case the validation process will consider one type at a time and it will fail only if the value
is not valid for any of the types listed. The table below provides the full list of types and the corresponding properties
that can be used.

type required canonic values default range regex
StringHandler XXX [lower, upper]
EnumHandler XXX XXX XXX
DateHandler XXX XXX
TimeHandler XXX XXX XXX
IntHandler XXX XXX XXX
FloatHandler XXX XXX
RegexHandler XXX XXX

• required- if specified the key would become mandatory. Note that keys used in base are mandatory by defaults

• canonic - Format to apply to the key value after validation

• values - List of valid values accepted

• default - Value given to the key if not specified

• range - Validity interval

• regex - Regex pattern to use during validation

8.4 How to customise the schema

Users can create their own schema following the syntax shown above. The new schema should be place in the default
location ~/.aviso/service_configuration/event_listener_schema.json . By doing so Aviso will only read this file ignoring
the example provided above.

Alternatively, schema can be retrieved dynamically from a remote location. This can be activated using the
remote_schema flag. See Configuration Management for more info.

Finally, a different schema parser can be indicated using the settings schema_parser, see Configuration. This
can be used to extend the creation and loading of the schema according to users needs. An example of this is the
EcmwfSchemaParser part of the listener_schema_parser module. See How Aviso Works at ECMWF for more
info.

26 Chapter 8. Make Your Own Event

CHAPTER

NINE

RUNNING AS A SERVICE

Aviso can be executed as a system service. This helps automating its restart in case of machine reboots. The following
steps help to configure Aviso to run as a service that automatically restarts:

1. Identify the location of Aviso executable:

whereis aviso

2. Create a system service unit, by creating the following file in /etc/systemd/system/aviso.service:

[Unit]
Description=Aviso

[Service]
User=<username> (if omitted it will run as root)
Group=<groupname> (optional)
WorkingDirectory= <home_directory> (optional)
ExecStart=<aviso_location> listen
Restart=always

[Install]
WantedBy=multi-user.target

3. Enable the aviso service:

sudo systemctl enable aviso.service

4. Reload systemd:

sudo systemctl daemon-reload

5. Start the service:

sudo systemctl start aviso.service

Note: If users change the Aviso configuration, Aviso service must be restarted otherwise the change will be ineffective.

27

Aviso, Release 0.11.1

28 Chapter 9. Running as a Service

CHAPTER

TEN

HOW AVISO WORKS AT ECMWF

This section presents how Aviso has been configured and deployed at ECMWF. This is a real-life example of usage of
Aviso as well as a service users can request to access.

Warning: ECMWF Aviso Data Notification service is currently limited to registered users only. Please contact
ECMWF Service Desk for more details and for configuration instructions.

10.1 ECMWF Aviso service

ECMWF has deployed Aviso as a notification service for the data availability of:

• Real-Time Model Output Data

• Products delivered via ECMWF dissemination system

Figure below shows ECMWF data flow; it starts from the data assimilation of observations, it then follows to the
generation of the model output, the real-time global forecast. This is a time critical step for users’ workflows and
therefore its completion is notified by Aviso. The data flow continues with the generation of derived products that are
then disseminated via ECMWF dissemination system. The delivery of these products is also notified by Aviso as users
depend on custom products for their downstream applications.

29

https://www.ecmwf.int/en/about/contact-us

Aviso, Release 0.11.1

This service is based on the Aviso server solution presented in Aviso Server Architecture. This server is currently
receiving over 300k notifications a day.

10.2 ECMWF event listeners

The yaml below shows an example of a listener configuration for ECMWF events.

listeners:
- event: mars
request:
class: od
expver: 1
domain: g
stream: enfo
step: [1,2,3]

triggers:
- type: echo

This is a basic example of a listener to real-time forecast events, this is identified by the keyword mars. request
contains specific keys that are a subset of the ECMWF MARS language.

30 Chapter 10. How Aviso Works at ECMWF

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets

Aviso, Release 0.11.1

10.2.1 Events

Aviso is currently offering notifications for the following types of events:

• dissemination event is submitted by the ECMWF product dissemination system. The related listener con-
figuration must define the destination key. A notification related to a dissemination event contains the
field location for the URL to access to the product notified

• mars event is designed for real-time data from the ECMWF model output. The related listener configuration does
not have any mandatory keys. Moreover the related notification does not contain the location field because users
will have to access to it by the conventional ECMWF MARS API

10.2.2 Request

The table below shows the full list of keys accepted in request. These keys represent a subset of the ECMWF MARS
language.

Key Type Event Optional/Mandatory
destination String, uppercase dissemination Mandatory
target String dissemination Optional
date Date (e.g.20190810) All Optional
time Values: [0,6,12,18] All Optional
class Enum All Optional
stream Enum All Optional
domain Enum All Optional
expver Integer All Optional
step Integer All Optional

10.2.3 Listener schema

All aspects regarding the keys above are defined by the ECMWF schema that is retrieved remotely as explained in
Configuration Management . This section shows a part of the ECMWF schema as a real life example of a schema
configuration.

{
"version": 0.1,
"payload": "location",
"dissemination": {
"endpoint": [

{
"engine": ["etcd_rest", "etcd_grpc"],
"admin": "/ec/admin/{date}/{destination}",
"base": "/ec/diss/{destination}",
"stem": "date={date},target={target},class={class},expver={expver},domain=

→˓{domain},time={time},stream={stream},step={step}"
},
{
"engine": ["file_based"],
"base": "/tmp/aviso/diss/{destination}",
"stem": "{target}/{class}/{expver}/{domain}/{date}/{time}/{stream}/{step}"

}
],

(continues on next page)

10.2. ECMWF event listeners 31

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets

Aviso, Release 0.11.1

(continued from previous page)

"request":
{
"domain": [{"type": "EnumHandler", "default": "g"}],
"target": [{"type": "StringHandler"}],
"stream": [{"type": "EnumHandler"}],
"destination": [{"type": "StringHandler", "required": true}],
"expver": [{"type": "IntHandler", "canonic": "{0:0>4}"}],
"step": [{"type": "IntHandler", "range": [0, 100000]}],
"time": [{"type": "TimeHandler", "canonic": "{0:0>2}", "values": [0, 6, 12, 18]}

→˓],
"date": [{"type": "DateHandler", "canonic": "%Y%m%d"}],
"class": [{"type": "EnumHandler"}]

}
},
"mars": {"..."}

}

The schema above regards to the dissemination event; the mars event definition would just follow. endpoint shows
a different key construction depending on the engine adapter to use. The one reserved for etcd allows the key to be
human-readable while the one for file_based to be compatible with a file system. admin key is used by the Aviso-
admin component of Aviso Server to carry out maintenance on the store.

request contains a number of keys some of which are of type EnumHandler. Note that no values are provided. This
would normally raise an error at runtime. However, this schema would be parsed by the ECMWF parser implemented
by EcmwfSchemaParser class. This loads the enum values directly from the ECMWF MARS language definition.

Finally "payload": "location" is used to substitute the word payload with the word location in the notifications.
This helps to customise the notifications to its domain; in the case of ECMWF data availability, location indicates
where to access to the data.

32 Chapter 10. How Aviso Works at ECMWF

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets

CHAPTER

ELEVEN

CONFIGURATION

A number of settings can be edited. For each of them users can override the defaults by means of one or a combination
of mechanisms. The final configuration used by the application is the result of the following sequence where each step
merges on the previous one:

1. Loading defaults

2. Loading system config file /etc/aviso/config.yaml

3. Loading Home config file ~/.aviso/config.yaml

4. Loading config defined by environment variables, AVISO_CONFIG

5. Loading config defined by command line option, -c, --config

6. Loading all environment variables

7. Loading all command line options

System and Home config files are optional.

The rest of this chapter presents all the settings available. For each of them, we present the type, the default value, how
to change them using command line options, environment variables or the configuration file. Not all these mechanisms
are available for all settings.

11.1 Application

These settings are applied at application level.

11.1.1 Logging

The application takes advantage for the Python logging module. Users can define a custom file configuration and pass
it using any of the following methods.

Type string, file path
Defaults Info log on console output
Command Line options -l, --log,
Environment variable AVISO_LOG
Configuration file

logging: <logging configuration>

33

https://docs.python.org/3/library/logging.html

Aviso, Release 0.11.1

Note: The configuration file method accepts directly the logging configuration rather than a file path to it.

11.1.2 Debug

If True the application will show the debug logs to the console output.

Type boolean
Defaults False
Command Line options -d, --debug
Environment variable AVISO_DEBUG
Configuration file

debug: False

11.1.3 Quiet

If True the application will not show any info logs to the console output. Only errors will be displayed.

Type boolean
Defaults False
Command Line options -q, --quiet
Environment variable AVISO_QUIET
Configuration file

quiet: False

11.1.4 No Fail

If True the application will always exit with error code 0, even in case of errors. This can be useful when used in a
automated workflow that is required not to stop even if Aviso exits because of errors.

Type boolean
Defaults False
Command Line options --no-fail
Environment variable AVISO_NO_FAIL
Configuration file

no_fail: False

34 Chapter 11. Configuration

Aviso, Release 0.11.1

11.1.5 Authentication Type

Type of authentication to use when talking to the server. ecmwf is required if accessing to the ECMWF Aviso service.
See How Aviso Works at ECMWF for more information. In case of talking directly to the store the other authentication
methods may be used. If none is selected, settings as username, username_file or key will be ignored.

Type Enum [ecmwf, etcd, none]
Defaults none
Command Line options N/A
Environment variable AVISO_AUTH_TYPE
Configuration file

auth_type: none

11.1.6 Username

This is used to authenticate the requests to the server.

Type string
Defaults None
Command Line options -u, --username
Environment variable AVISO_USERNAME
Configuration file

username: xxxx

11.1.7 Username File

If set, the username will be read from the file defined. This takes priority over username.

Type string, file path
Defaults None
Command Line options N/A
Environment variable AVISO_USERNAME_FILE
Configuration file

username_file: xxxx

11.1.8 Key

File from where to read the password to use to authenticate the requests to the server.

11.1. Application 35

Aviso, Release 0.11.1

Type string, file path
Defaults /etc/aviso/key
Command Line options -k, --key
Environment variable AVISO_KEY_FILE
Configuration file

key_file: /etc/aviso/key

11.1.9 Schema Parser

Type of parser to use to read the event listener schema. ecmwf is required if accessing to the ECMWF Aviso service.

Type Enum [generic, ecmwf]
Defaults generic
Command Line options N/A
Environment variable AVISO_SCHEMA_PARSER
Configuration file

schema_parser: generic

11.1.10 Remote Schema

If False the listener schema is read locally from the expected default location. In this case all the configuration en-
gine settings are ignored. If True the listener schema is retrieved dynamically from the configuration server when the
application starts. More info in Configuration Management

Type boolean
Defaults False
Command Line options N/A
Environment variable AVISO_REMOTE_SCHEMA
Configuration file

remote_schema: False

11.2 Notification Engine

This group of settings defines the connection to the notification server. The current defaults allow the connection to a
default etcd local installation.

36 Chapter 11. Configuration

Aviso, Release 0.11.1

11.2.1 Host

Type string
Defaults localhost
Command Line options -H, --host
Environment variable AVISO_NOTIFICATION_HOST
Configuration file

notification_engine:
host: localhost

11.2.2 Port

Type integer
Defaults 2379
Command Line options -P, --port
Environment variable AVISO_NOTIFICATION_PORT
Configuration file

notification_engine:
port: 2379

11.2.3 Type

This defines the protocol to use to connect to the server. In case of file_based Aviso will run in TestMode by
connecting to a local store, part of Aviso itself. In this mode, users can execute any of the commands described in
Notification CLI . The only restriction applies to retrieving past notifications that are not available. See Testing my
Listener for more info. In case of etcd_grpc or``etcd_rest`` Aviso will connect to a etcd store either by its native
gRPC API or by the RESTfull API implemented by the etcd gRPC gateway.

Type Enum: [etcd_rest, etcd_grpc, file_based]
Defaults etcd_rest
Command Line options N/A
Environment variable AVISO_NOTIFICATION_ENGINE
Configuration file

notification_engine:
type: etcd_rest

11.2.4 Polling Interval

Number of seconds between successive requests of new notifications to the server .

11.2. Notification Engine 37

https://etcd.io/docs/v3.4.0/dev-guide/api_grpc_gateway/

Aviso, Release 0.11.1

Type integer, seconds
Defaults 30
Command Line options N/A
Environment variable AVISO_POLLING_INTERVAL
Configuration file

notification_engine:
polling_interval: 30

11.2.5 Timeout

Timeout for the requests to the notification sever

Type integer, seconds
Defaults 60
Command Line options N/A
Environment variable AVISO_TIMEOUT
Configuration file

notification_engine:
timeout: 60

11.2.6 HTTPS

Type boolean
Defaults False
Command Line options N/A
Environment variable AVISO_NOTIFICATION_HTTPS
Configuration file

notification_engine:
https: False

11.2.7 Catchup

If True the application will start retrieving first the missed notifications and then listening to the new ones. See Notifi-
cation Catch-up for more information.

Type boolean
Defaults True
Command Line options --catchup
Environment variable AVISO_NOTIFICATION_CATCHUP
Configuration file

notification_engine:
catchup: True

38 Chapter 11. Configuration

Aviso, Release 0.11.1

11.2.8 Service

Key identifying Aviso application in the configuration management system. See Configuration Management for more
information.

Values string
Defaults aviso/v1
Command Line options N/A
Environment variable AVISO_NOTIFICATION_SERVICE
Configuration file

notification_engine:
service: "aviso/v1"

11.2.9 AUTOMATIC RETRY DELAY

Number of seconds to wait before retrying to connect to the notification sever. This prevents the application to terminate
in case of temporarily network issues for example.

Type integer, seconds
Defaults 15
Command Line options N/A
Environment variable AVISO_AUTOMATIC_RETRY_DELAY
Configuration file

notification_engine:
automatic_retry_delay: 15

11.3 Configuration Engine

This group of settings defines the connection to the configuration management server. The current defaults allows
connecting to a default etcd local installation. This is however not a requirement and different servers can be used. See
Configuration Management for more information.

11.3.1 Host

Type string
Defaults localhost
Command Line options -H, --host
Environment variable AVISO_CONFIGURATION_HOST
Configuration file

configuration_engine:
host: localhost

11.3. Configuration Engine 39

Aviso, Release 0.11.1

11.3.2 Port

Type integer
Defaults 2379
Command Line options -P, --port
Environment variable AVISO_CONFIGURATION_PORT
Configuration file

configuration_engine:
port: 2379

11.3.3 Type

Type Enum: [etcd_rest, etcd_grpc]
Defaults etcd_rest
Command Line options N/A
Environment variable AVISO_CONFIGURATION_ENGINE
Configuration file

configuration_engine:
type: etcd_rest

11.3.4 Timeout

Timeout for the requests to the notification sever

Type integer, seconds
Defaults 60
Command Line options N/A
Environment variable AVISO_TIMEOUT
Configuration file

configuration_engine:
timeout: 60

11.3.5 HTTPS

Type boolean
Defaults False
Command Line options N/A
Environment variable AVISO_CONFIGURATION_HTTPS
Configuration file

configuration_engine:
https: False

40 Chapter 11. Configuration

Aviso, Release 0.11.1

11.3.6 Max File Size

This is the maximum file size allowed by during a push operation.

Type integer, KiB
Defaults 500
Command Line options --catchup
Environment variable AVISO_MAX_FILE_SIZE
Configuration file

configuration_engine:
max_file_size: 500

11.3.7 AUTOMATIC RETRY DELAY

Number of seconds to wait before retrying to connect to the configuration sever. This prevents the application to
terminate in case of temporarily network issues for example.

Type integer, seconds
Defaults 15
Command Line options N/A
Environment variable AVISO_AUTOMATIC_RETRY_DELAY
Configuration file

configuration_engine:
automatic_retry_delay: 15

11.3. Configuration Engine 41

Aviso, Release 0.11.1

42 Chapter 11. Configuration

CHAPTER

TWELVE

TRIGGERS

This section lists the various triggers currently available. Each trigger will result in an independent process executed
every time a notification is received.

12.1 Echo

This is the simplest trigger as it prints the notification to the console output. It is used for testing and it does not accept
any extra parameters.

triggers:
- type: echo

12.2 Log

This trigger logs the event to a log file. It is useful for recording the received event.

triggers:
- type: log
path: testLog.log

Note: The trigger process will fail if the directory does not exist.

12.3 Command

This trigger allows the user to define a shell command to work with the notification.

triggers:
- type: command
working_dir: $HOME/aviso/examples
command: ./script.sh --date ${request.date} --number ${request.number}
environment:
AIRPORT: ${request.airport}
COUNTRY: "The country is ${request.country}"

• command is the command that will be executed for each notification received. This is a mandatory field.

43

Aviso, Release 0.11.1

• environment is a user defined list of local variables that will be passed to the command shell. This is an optional
field.

• working_dir defines the working directory that will be set before executing the command. This is an optional
field.

Moreover, the system performs a parameter substitution in the command and environment fields, for every sequence of
the pattern:

• ${name}, it replaces it with the value associated to the corresponding key found in the notification received.

• ${json}, it replaces it with the whole notification formatted as a JSON inline string.

• ${jsonpath}, it replaces it with the file name of a JSON file containing the notification.

A notification is a dictionary whose keys can be used in the parameter substitution mechanism described above. Here
is an example of a notification:

{
"event": "flight",
"payload": "Landed",
"request": {
"country": "italy",
"date": "20210101",
"airport": "FCO",
"number": "AZ203"

}
}

12.4 Post

This trigger will format the notification according to the CloudEvents specification and will send it to either a endpoint
as HTTP POST request or to a AWS Simple Notification Service (SNS) topic. This trigger basically turns Aviso client
in a proxy forwarding the notification to the user’s notification system compatible with CloudEvents specification, as
shown by the figure below:

Here is a basic example of a Post trigger sending the notification to a HTTP endpoint defined by the user. The type is
cloudevents_http and url is the only mandatory parameter.

44 Chapter 12. Triggers

https://cloudevents.io/
https://cloudevents.io/

Aviso, Release 0.11.1

triggers:
- type: post
protocol:
type: cloudevents_http
url: http://my.endpoint.com/api

This is the basic configuration. More parameters can be specified to customise the CloudEvents message. More info
in the reference documentation.

The CloudEvents message sent would look like the following:

{
"type" : "aviso", # this is customisable by the user
"data": { # this is aviso specific
"event": "flight",
"payload": "Landed",
"request": {

"country": "italy",
"date": "20210101",
"airport": "FCO",
"number": "AZ203"

}
},
"datacontenttype": "application/json",
"id": "0c02fdc5-148c-43b5-b2fa-cb1f590369ff", # UUID random generated by aviso
"source": "https://aviso.int", # this is customisable by the user
"specversion": "1.0",
"time": "2020-03-02T13:34:40.245Z", # Timestamp of when this message is␣

→˓created
}

Here is a complete example showing how to customise the CloudEvents fields as well as the HTTP headers using
optional parameters:

triggers:
- type: post
protocol:
type: cloudevents_http
url: http://my.endpoint.com/api
headers:
HTTP_TEST: "test"

timeout: 30
cloudevents:
type: test_cloudevent
source: my_test

In the case of a notification to a AWS SNS topic defined by the user, the structure of the trigger is similar; the type has
to be cloudevents_aws and arn and region_name are the only mandatory parameters.

The optional parameters are: MessageAttributes, aws_access_key_id, aws_secret_access_key for the
AWS topic fields and cloudevents for the CloudEvents fields. Note that if aws_access_key_id and
aws_secret_access_key are not specified the AWS credentials are taken from ~/.aws/credentials if available.

AWS SNS protocol does not enforce any specification on the message payload. Aviso uses the CloudEvents specification
also in this case for consistency.

12.4. Post 45

https://cloudevents.io/

Aviso, Release 0.11.1

triggers:
- type: post
protocol:
type: cloudevents_aws
arn: arn:aws:sns:us-east-2:848972885776:aviso
region_name: us-east-2
MessageAttributes:
attribute1:
DataType: String
StringValue: valueAttribute1

attribute2:
DataType: String
StringValue: valueAttribute2

cloudevents:
type: aviso_topic
source: my_test

Finally, in case of a AWS FIFO topic MessageGroupId is required.

12.5 Function

Differently from the previous triggers, this trigger is not file based. It allows the user to define a Python function to
be executed directly by Aviso. This is intended for users that want to integrate Aviso Python API into a workflow or
application written in Python.

Below find an example of a python script that defines a function to be executed once a notification is received, creates
a listener that references to this function trigger and finally passes it to aviso to execute.

from pyaviso import NotificationManager

define function to be called
def do_something(notification):

print(f"Notification for step {notification['request']['step']} received")
now do something useful with it ...

define the trigger
trigger = {"type": "function", "function": do_something}

create a event listener request that uses that trigger
request = {"country": "Italy"}
listeners = {"listeners": [{"event": "flight", "request": request, "triggers": [trigger]}
→˓]}

run it
aviso = NotificationManager()
aviso.listen(listeners=listeners)

See Python API for more info on how to use Aviso API.

46 Chapter 12. Triggers

CHAPTER

THIRTEEN

NOTIFICATION CLI

Aviso provides a Command Line Interface (CLI) for listening to notifications from the server system described in Aviso
Server Architecture. This section describes in detail the various commands associated with this functionality.

% aviso -h
Options:
--version Show the version and exit.
-h, --help Show this message and exit.

Commands:
key Generate the key to send to the notification server according to...
listen This method allows the user to execute the listeners defined in...
notify Create a notification with the parameters passed and submit it to...
value Return the value on the server corresponding to the key which is...

13.1 Listen

This command allows to listen to notifications compliant with the listeners defined:

aviso listen -h
Usage: aviso listen [OPTIONS] [LISTENER_FILES]...

This method allows the user to execute the listeners defined in the YAML
listener file

:param listener_files: YAML file used to define the listeners

Options:
-c, --config TEXT User configuration file path.
-l, --log TEXT Logging configuration file path.
-d, --debug Enable the debug log.
-q, --quiet Suppress non-error messages from the console output.
--no-fail Suppress any error exit code.
-u, --username TEXT Username required to authenticate to the server.
-k, --key TEXT File path to the key required to authenticate to the␣
→˓server.
-H, --host TEXT Notification server host.
-P, --port INTEGER Notification server port.
--test Activate TestMode.

(continues on next page)

47

Aviso, Release 0.11.1

(continued from previous page)

--from [%Y-%m-%dT%H:%M:%S.%fZ] Replay notification from this date.
--to [%Y-%m-%dT%H:%M:%S.%fZ] Replay notification to this date.
--now Ignore missed notifications, only listen to new ones.
--catchup Retrieve first the missed notifications.
-h, --help Show this message and exit.

The parameter listener_files is used to define the event listeners and the triggers to execute in case of notifications.
If not present the system will look for the default listeners which can be defined in the configuration files. Here is an
example of invoking this command with one listener file:

aviso listen examples/echoListener.yaml

Once in execution this command will create a background process waiting for notifications and a foreground process
in busy waiting mode. Multiple files can also be indicated as shown below:

aviso listen listener1.yaml listener2.yaml

Most of the options accepted by this command are used to change the application configuration. Below are presented
only the options that are not covered by the Configuration section.

13.1.1 No fail

If the option --no-fail is present, the application will always exit with error code 0, even in case of errors. This can
be useful when used in a automated workflow that is required not to stop even if Aviso exits because of errors.

13.1.2 Test

If the option --test is present, the application will run in TestMode. See Testing my Listener for more information.

13.1.3 Now

If the option --now is present, the application will start ignoring the missed notifications while listening only to the
new ones. See Notification Catch-up for more information.

13.1.4 Catchup

If the option --catchup is present, the application will start retrieving first the missed notifications and then listening
to the new ones. See Notification Catch-up for more information. This option is enabled by default. See Configuration
for more information.

48 Chapter 13. Notification CLI

Aviso, Release 0.11.1

13.2 Key

This command can be used to generate the key accepted by the notification server as part of the notification key-value
pair. This command is mostly used for debugging.

% aviso key -h
Usage: aviso key [OPTIONS] PARAMETERS

Generate the key to send to the notification server according to the
current schema using the parameters defined

:param parameters: key1=value1,key2=value2,...

Options:
-c, --config TEXT User configuration file path.
-l, --log TEXT Logging configuration file path.
-d, --debug Enable the debug log.
-q, --quiet Suppress non-error messages from the console output.
--no-fail Suppress any error exit code.
-u, --username TEXT Username required to authenticate to the server.
-k, --key TEXT File path to the key required to authenticate to the

server.
-H, --host TEXT Notification server host.
-P, --port INTEGER Notification server port.
--test Activate TestMode.
-h, --help Show this message and exit.

Here is an example of this command:

aviso key event=flight,country=Italy,airport=fco,date=20210101,number=AZ203

Note all the keys are required. The output from this command will be something like:

/tmp/aviso/flight/20210101/italy/FCO/AZ203

Note how the format and the order of the parameters have been adjusted to complying with the listener schema presented
in Getting Started

All the options accepted by this command are covered in Listen and in Configuration.

13.3 Value

This command is used to retrieve from the store the value associated to a specific key using the same syntax of the
command key.

% aviso value -h
Usage: aviso value [OPTIONS] PARAMETERS

Return the value on the server corresponding to the key which is generated
according to the current schema and the parameters defined

:param parameters: key1=value1,key2=value2,...
(continues on next page)

13.2. Key 49

Aviso, Release 0.11.1

(continued from previous page)

Options:
-c, --config TEXT User configuration file path.
-l, --log TEXT Logging configuration file path.
-d, --debug Enable the debug log.
-q, --quiet Suppress non-error messages from the console output.
--no-fail Suppress any error exit code.
-u, --username TEXT Username required to authenticate to the server.
-k, --key TEXT File path to the key required to authenticate to the

server.
-H, --host TEXT Notification server host.
-P, --port INTEGER Notification server port.
--test Activate TestMode.
-h, --help Show this message and exit.

Here is an example of this command:

aviso value event=flight,country=Italy,airport=fco,date=20210101,number=AZ203

Note the list of parameters required, this is the same list required by the key command. The output from this command
will be something like:

Landed

Not all keys have corresponding values because it is optional. In this case the output would be None

All the options accepted are covered in Listen and in Configuration.

13.4 Notify

This command is used to directly send a notification to the server using the same syntax of the command key

% aviso notify -h
Usage: aviso notify [OPTIONS] PARAMETERS

Create a notification with the parameters passed and submit it to the
notification server :param parameters: key1=value1,key2=value2,...

Options:
-c, --config TEXT User configuration file path.
-l, --log TEXT Logging configuration file path.
-d, --debug Enable the debug log.
-q, --quiet Suppress non-error messages from the console output.
--no-fail Suppress any error exit code.
-u, --username TEXT Username required to authenticate to the server.
-k, --key TEXT File path to the key required to authenticate to the

server.
-H, --host TEXT Notification server host.
-P, --port INTEGER Notification server port.
--test Activate TestMode.
-h, --help Show this message and exit.

50 Chapter 13. Notification CLI

Aviso, Release 0.11.1

Here is an example of this command:

aviso notify event=flight,country=Italy,airport=fco,date=20210101,number=AZ203,
→˓payload=Landed

Note the list of parameters required, this is the same list required by the key command with the addition of the payload
pair. This is needed to assign a value to the key that will be saved into the store. If not given the value will be None.
This last case is used when only an acknowledgement that something happened is needed.

All the options accepted by this command are covered in Listen and in Configuration.

13.4. Notify 51

Aviso, Release 0.11.1

52 Chapter 13. Notification CLI

CHAPTER

FOURTEEN

PYTHON API

Aviso provides a Python API for the key operations that concern the notification workflow: listen and notify.
This API has the same level of expressiveness as the CLI. Moreover users can create and customise a user_config.
UserConfig object. This object allows to programmatically define any setting described in in Configuration.

This is intended for users that want to integrate Aviso in a workflow or application written in Python. An example of
integration of Aviso in a external Python application is the server component Aviso REST, described in Aviso Server
Architecture. This component internally relies on Aviso client to submit notifications to the store.

14.1 Listen

This method is used to start the polling for changes from Aviso client to Aviso server. This allows the user to retrieve
new notifications as they are submitted to Aviso server.

Below is an example of a python script that defines a function to be executed once a notification is received, creates a
listener that references to this function trigger and finally passes it to Aviso to execute.

from pyaviso import NotificationManager

define function to be called
def do_something(notification):

print(f"Notification for step {notification['request']['step']} received")
now do something useful with it ...

define the trigger
trigger = {"type": "function", "function": do_something}

create a event listener request that uses that trigger
request = {"country": "Italy"}
listeners = {"listeners": [{"event": "flight", "request": request, "triggers": [trigger]}
→˓]}

run it
aviso = NotificationManager()
aviso.listen(listeners=listeners)

This script will put the main process is busy waiting while polling at regular time the server. All the various types of
triggers presented in Triggers can also be defined or manually loaded from file.

The object NotificationManager can take as parameter a UserConfig object that the user can create and customise.
If not passed the manager object will instantiate a config object that follows the criteria explained in Configuration.
This example shows the latter, moreover, it is using the default listener schema presented in Make Your Own Event.

53

Aviso, Release 0.11.1

14.2 Notify

This method is used to submit notification. The example belows shows how to send a generic notification compliant
with the generic listener schema presented in Make Your Own Event

from pyaviso import NotificationManager

aviso = NotificationManager()

define the parameters of the notification
notification = {

"event":"flight",
"country": "italy",
"date": "20210101",
"airport": "FCO",
"number": "AZ203",
"payload": "Landed"

}

send the notification
aviso.notify(notification)

54 Chapter 14. Python API

CHAPTER

FIFTEEN

CONFIGURATION MANAGEMENT

Aviso can also be used to store and retrieve configuration files for external applications. In this case it acts as a config-
uration management system.

From the sever side storing configurations equates to a key-value pair where the key is the configuration file path and
the value is the configuration content. This means that the two Aviso functionalities, notification and configuration,
share the same server technology and architecture, and therefore most of user options presented in Notification CLI .

This functionality can be used as part of the Aviso notification workflow. Specifically, by enabling the remote_schema
flag, Aviso will dynamically pull the event listener schema when Aviso client starts. This allows to share and update
this schema with the notification providers. The notification provider is required to comply with the notification format
otherwise the notification will be wrongly identified by the listeners. This solution exploits the scalability of the server
architecture already in place. See Configuration on how to enable it.

The following section presents the commands available with the configuration CLI.

% aviso-config -h
Usage: aviso-config [OPTIONS] COMMAND [ARGS]...

Options:
--version Show the version and exit.
-h, --help Show this message and exit.

Commands:
pull Pull all files associated with the service defined.
push Push all files from the directory selected to the service...
remove Remove all files associated with the service defined.
revert Revert all files associated with the service defined to the...
status Retrieve the status of the service defined.

Note: The commands above inherit the options and configuration described in Notification CLI and in Configuration.
These options are then omitted from the descriptions that follow.

55

Aviso, Release 0.11.1

15.1 Pull

The pull operation is used to retrieve the configuration files of a specific service.

% aviso-config pull -h
Usage: aviso-config pull [OPTIONS] SERVICE

Pull all files associated with the service defined.

Options:
-H, --host TEXT Configuration server host.
-P, --port INTEGER Configuration server port.
-D, --dir TEXT Destination directory to pull into.
--delete Allows delete of local files if they do not exist on the server.

Below is an example of how to use it:

aviso-config pull aviso/v1 --dir config/event_listener/

In this case the configuration files associated to the service aviso/v1will be pulled and saved in the directory indicated.
If any of these files is already present it will be overridden.

Note: Options -H and -P are used to set the configuration server as aviso-config does not use any notification server.

15.2 Push

The push operation is used to push configuration files of a specific service.

% aviso-config push -h
Push all files from the directory selected to the service defined,
respecting the subdirectory structure.

Options:
-H, --host TEXT Configuration server host.
-P, --port INTEGER Configuration server port.
-D, --dir TEXT Directory to push. [required]
-m, --message TEXT Message to associate to the push. [required]
--delete Allows delete of files on server if they do not exist locally.

Below is an example of how to use it:

aviso-config push aviso/v1 --dir config/event_listener/ -m 'event listener schema update'

In this case the content of the directory config/event_listener is pushed under the service aviso/v1 Note that every
time something is pushed to a service location, the service status is updated with the message passed and the user
information and the version are incremented.

56 Chapter 15. Configuration Management

Aviso, Release 0.11.1

15.3 Remove

The remove operation is used to remove all the configuration files of a specific service.

% aviso-config remove -h
Usage: aviso-config remove [OPTIONS] SERVICE

Remove all files associated with the service defined.

Options:
-H, --host TEXT Configuration server host.
-P, --port INTEGER Configuration server port.
-f, --doit Remove without prompt.

Below is an example of how to use it:

aviso-config remove aviso/v1 -f

In this case the configuration files associated to the service passed will all be removed from the configuration server.

Without the option -f the application only lists the files associated to the service. It can therefore be used just to list
the files associated with the service.

15.4 Revert

The revert operation is used to restore the previous version of all the configuration files of a specific service.

% aviso-config revert -h
Usage: aviso-config revert [OPTIONS] SERVICE

Revert all files associated with the service defined to the previous
version.

Options:
-H, --host TEXT Configuration server host.
-P, --port INTEGER Configuration server port.

Below is an example of how to use it:

aviso-config revert aviso/v1

Note: If this command is run twice consecutively, this results in no changes to the files on the server but the version
will be incremented.

15.3. Remove 57

Aviso, Release 0.11.1

15.5 Status

The status operation is used to retrieve the status of a specific service.

% aviso-config status -h
Usage: aviso-config status [OPTIONS] SERVICE

Retrieve the status of the service defined.

Options:
-H, --host TEXT Configuration server host.
-P, --port INTEGER Configuration server port.

Below is an example of how to use it:

aviso-config status aviso/v1

This would return something on these lines:

{
"aviso_version": "0.3.0",
"date_time": "2020-02-04T16:25:45.521Z",
"engine": "ETCD_REST",
"etcd_user": "root",
"hostname": "viron",
"message": "test",
"prev_rev": 55054,
"unix_user": "maci",
"version": 23

}

58 Chapter 15. Configuration Management

CHAPTER

SIXTEEN

WHAT’S NEW

16.1 v0.11.1 (02 February 2022)

HTTP 404 has been added among the exceptions handled by the automatic restart mechanism of aviso listeners. This
is needed during maintenance sessions.

16.2 v0.11.0 (14 December 2021)

The main new feature of this release is the extension of the Post trigger to support AWS topics. More info available in
the dedicated page Post.

16.2.1 Breaking changes

Post trigger of type cloudevents is now of type cloudevents_http. This to distinguish it from the Post trigger to
AWS topic that is of type cloudevents_aws

16.3 v0.10.0 (26 April 2021)

The main new feature of this release is the implementation of an automatic retry mechanism for the listening process
to reconnect in case of network issues or sever unavailability. Thanks to this the listening process should never require
a manual restart.

16.4 v0.9.2 (4 February 2021)

First public release.

59

Aviso, Release 0.11.1

60 Chapter 16. What’s New

CHAPTER

SEVENTEEN

HOW TO DEVELOP

Aviso source code is available on GitHub at https://github.com/ecmwf/aviso

Please report any issues on GitHub at https://github.com/ecmwf/aviso/issues

Below a few steps to guide the development:

• Clone Aviso repository:

git clone https://github.com/ecmwf/aviso.git

• Install pyaviso for development, from inside the main aviso folder:

pip install -e .

• Install development dependencies:

pip install -U -r tests/requirements-dev.txt

• Unit and system tests for pyaviso can be run with pytest with:

pytest tests -v --cov=pyaviso --cache-clear

• Ensure to comply with PEP8 code quality:

tox -e quality

Note: In order to run the tests, an instance of etcd has to run on 127.0.0.1/2379 with default configurations. Please
check Getting Started for more info on how to install it.

To develop on the Aviso server components:

• Install the following module:

pip install -e aviso-server/monitoring
pip install -e aviso-server/rest
pip install -e aviso-server/auth
pip install -e aviso-server/admin

• Before submitting a pull request run all tests and code quality check:

tox

61

https://github.com/ecmwf/aviso
https://github.com/ecmwf/aviso/issues
https://pytest.org

Aviso, Release 0.11.1

62 Chapter 17. How to Develop

CHAPTER

EIGHTEEN

AVISO CLIENT ARCHITECTURE

Figure below shows the high-level architecture of Aviso client.

The whole Aviso Client application is implemented by the project package pyaviso. It provides two kinds of interfaces
to users, a Python API for integration in user’s applications and a Command Line Interface (CLI) to use it as standalone
application. The latter uses internally the Python API, implemented by the `notification_manager module. This
module relies on the listener_manager module to translate the user’s listener configuration into requests for the
store.

The Listener Manager encapsulates the domain-specific listener semantic and is therefore in charge of the listener val-
idation and the creation of the various EventListener. These entities map users’ requests and represent independent
listening threads that execute the triggers as independent processes in case of a valid notification is received.

The backend of the application is implemented by the engine package. The Engine offers a common interface to the
requests arriving from the business layer and directed to the key-value store. Different implementations are available
depending on the protocol used by the Key-Value store. Currently the store considered are etcd and a file-based store
used only in TestMode.

63

https://etcd.io/

Aviso, Release 0.11.1

64 Chapter 18. Aviso Client Architecture

CHAPTER

NINETEEN

AVISO SERVER ARCHITECTURE

This section presents the general architecture for Aviso Server. It shows components that are ECMWF specific such as
Aviso Auth while others that are generic such as the key-value store. This architecture can therefore evolve and adapt
to different infrastructures that are available to the users.

Figure below shows the current high-level architecture of Aviso server.

The source of the components presented here is available in the aviso-server folder of the project. The remaining
part of this section, briefly introduces each component.

19.1 Key-Value store

The core component of Aviso Server is a Key-Value store. This is a critical component because it guarantees persistence
and consistency for all the notifications processed. The current Key-Value store technology used is etcd. This is
a strongly consistent, distributed key-value store able to reach consensus thanks to Raft algorithm. This allows it to
gracefully tolerate machine failure and network partition. Moreover, it is designed for high-throughput. We are running
it in is default configuration of a cluster of 3 components.

Note: All the other components of the Aviso Server are built independent of the technology used for the store. The

65

https://etcd.io/

Aviso, Release 0.11.1

same applies for Aviso Client that completely hides to the user the etcd API.

19.2 Aviso REST

This component is a REST frontend that allows notification providers to submit notifications to the store via a REST
interface. Internally it uses Aviso Python API as if it was a client towards the store.

Install it by, from the main project directory:

pip install -e .
pip install -e aviso-server/monitoring
pip install -e aviso-server/rest

The aviso and aviso-monitoring packages are required by aviso-rest.

Launch it by:

aviso-rest

19.3 Aviso Auth

Aviso Auth is a web application implementing a proxy responsible for authenticating the end-users’ requests directed
to the store. This allows to not rely on the store native authentication and authorisation capability while using ECMWF
centralised resources. It follows a 2-steps process:

1. The request is validated against the ECMWF authentication server by checking the token associated to the request.

2. The user associated to the token is checked if he can access to the resource is asking notifications for. This is
performed by requesting the allowed resources associated to the user from the ECMWF authorisation server.

If both steps are successful the request is forwarded to the store.

Note: Currently only the listen command is allowed by this component. Any other operation is not authorised.

Install it by, from the main project directory:

pip install -e aviso-server/monitoring
pip install -e aviso-server/auth

The aviso-monitoring package is required by aviso-auth.

Launch it by:

aviso-auth

66 Chapter 19. Aviso Server Architecture

Aviso, Release 0.11.1

19.4 Aviso Admin

This component performs maintenance operations to the store in order to keep it at constant size. Currently the imple-
mentation is specific for an etcd store. This store requires the following operations:

• Compaction, this operation removes the history older than a certain date

• Deletion, this operation deletes all the keys older than a certain date

This component also uses the _monitoring_ package to run a UDP server to receive telemetries from all the other
components on the server. It runs a periodic aggregation and evaluation of these telemetries and it then communicates
the status of the components to the ECMWF monitoring server.

Install it by, from the main project directory:

pip install -e aviso-server/monitoring
pip install -e aviso-server/admin

The aviso-monitoring package is required by aviso-admin.

Launch it by:

aviso-admin

19.5 Monitoring

The package called aviso_monitoring allows the implementation of the monitoring system designed for the Aviso
Server. It is a library that any other components can use either for:

• Collecting telemetries inside the component application, aggregate them and send them via UDP package

• Collecting telemetries from other components via a UDP server, aggregate and evaluate them and send them to
a monitoring server.

The first capability is currently used by the components Aviso Rest and Aviso Auth. The second capability is used by
the Aviso Admin component.

Install it by, from the main project directory:

pip install -e aviso-server/monitoring

19.4. Aviso Admin 67

Aviso, Release 0.11.1

68 Chapter 19. Aviso Server Architecture

CHAPTER

TWENTY

LICENSE

Aviso is available under the open source Apache License. In applying this licence, ECMWF does not waive the privi-
leges and immunities granted to it by virtue of its status as an intergovernmental organisation nor does it submit to any
jurisdiction.

69

http://www.apache.org/licenses/LICENSE-2.0.html

	Overview
	What could I use Aviso for?
	Aviso general workflow

	Getting Started
	Installing
	Configuring
	Launching

	Define my Listener
	Triggers

	Aviso as a Python API
	Listener Examples
	Command
	Echo
	Log
	Accessing to ECMWF archive
	Multiple
	Post
	Python API

	Testing my Listener
	Notification Catch-up
	Make Your Own Event
	Event type
	Endpoint
	Request
	How to customise the schema

	Running as a Service
	How Aviso Works at ECMWF
	ECMWF Aviso service
	ECMWF event listeners
	Events
	Request
	Listener schema

	Configuration
	Application
	Logging
	Debug
	Quiet
	No Fail
	Authentication Type
	Username
	Username File
	Key
	Schema Parser
	Remote Schema

	Notification Engine
	Host
	Port
	Type
	Polling Interval
	Timeout
	HTTPS
	Catchup
	Service
	AUTOMATIC RETRY DELAY

	Configuration Engine
	Host
	Port
	Type
	Timeout
	HTTPS
	Max File Size
	AUTOMATIC RETRY DELAY

	Triggers
	Echo
	Log
	Command
	Post
	Function

	Notification CLI
	Listen
	No fail
	Test
	Now
	Catchup

	Key
	Value
	Notify

	Python API
	Listen
	Notify

	Configuration Management
	Pull
	Push
	Remove
	Revert
	Status

	What’s New
	v0.11.1 (02 February 2022)
	v0.11.0 (14 December 2021)
	Breaking changes

	v0.10.0 (26 April 2021)
	v0.9.2 (4 February 2021)

	How to Develop
	Aviso Client Architecture
	Aviso Server Architecture
	Key-Value store
	Aviso REST
	Aviso Auth
	Aviso Admin
	Monitoring

	License

